DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Today, we are thrilled to announce that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier model, DeepSeek-R1, along with the distilled variations ranging from 1.5 to 70 billion parameters to build, experiment, and properly scale your generative AI ideas on AWS.
In this post, we demonstrate how to get going with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar steps to release the distilled variations of the designs too.
Overview of DeepSeek-R1
DeepSeek-R1 is a large language design (LLM) established by DeepSeek AI that uses reinforcement learning to improve reasoning abilities through a multi-stage training procedure from a DeepSeek-V3-Base structure. A crucial distinguishing function is its support learning (RL) action, which was used to improve the design's actions beyond the standard pre-training and fine-tuning procedure. By including RL, DeepSeek-R1 can adjust better to user feedback and objectives, eventually enhancing both relevance and clarity. In addition, DeepSeek-R1 utilizes a chain-of-thought (CoT) approach, meaning it's equipped to break down intricate queries and reason through them in a detailed manner. This guided thinking process enables the design to produce more accurate, transparent, and detailed answers. This design integrates RL-based fine-tuning with CoT abilities, aiming to generate structured responses while concentrating on interpretability and user interaction. With its comprehensive capabilities DeepSeek-R1 has actually caught the market's attention as a versatile text-generation design that can be integrated into numerous workflows such as agents, logical thinking and information interpretation jobs.
DeepSeek-R1 utilizes a Mix of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture enables activation of 37 billion parameters, allowing effective inference by routing queries to the most relevant specialist "clusters." This method permits the model to focus on various issue domains while maintaining total effectiveness. DeepSeek-R1 requires a minimum of 800 GB of HBM memory in FP8 format for reasoning. In this post, we will use an ml.p5e.48 xlarge instance to deploy the design. ml.p5e.48 xlarge includes 8 Nvidia H200 GPUs providing 1128 GB of GPU memory.
DeepSeek-R1 distilled models bring the thinking capabilities of the main R1 model to more effective architectures based upon popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a process of training smaller sized, more efficient designs to mimic the behavior and thinking patterns of the bigger DeepSeek-R1 design, utilizing it as a teacher design.
You can deploy DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we recommend releasing this model with guardrails in place. In this blog, we will use Amazon Bedrock Guardrails to introduce safeguards, prevent harmful content, and assess models against crucial safety criteria. At the time of composing this blog, for DeepSeek-R1 deployments on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can produce multiple guardrails tailored to various usage cases and apply them to the DeepSeek-R1 model, enhancing user experiences and standardizing security controls across your generative AI applications.
Prerequisites
To release the DeepSeek-R1 design, you require access to an ml.p5e circumstances. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and verify you're utilizing ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are releasing. To request a limit boost, create a limitation increase demand and reach out to your account team.
Because you will be deploying this design with Amazon Bedrock Guardrails, make certain you have the appropriate AWS Identity and Gain Access To Management (IAM) authorizations to use Amazon Bedrock Guardrails. For instructions, see Establish permissions to utilize guardrails for content filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails allows you to present safeguards, prevent damaging content, and evaluate models against crucial safety requirements. You can carry out precaution for the DeepSeek-R1 design utilizing the Amazon Bedrock ApplyGuardrail API. This permits you to apply guardrails to examine user inputs and model actions released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail utilizing the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo.
The basic circulation involves the following actions: First, the system receives an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the model for inference. After getting the design's output, another guardrail check is used. If the output passes this final check, it's returned as the final outcome. However, if either the input or output is stepped in by the guardrail, a message is returned suggesting the nature of the intervention and whether it took place at the input or output stage. The examples showcased in the following areas show this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized foundation models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following steps:
1. On the Amazon Bedrock console, pick Model catalog under Foundation designs in the navigation pane.
At the time of writing this post, you can use the InvokeModel API to conjure up the model. It does not support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a service provider and select the DeepSeek-R1 design.
The design detail page provides necessary details about the design's abilities, pricing structure, and implementation standards. You can discover detailed use instructions, including sample API calls and code bits for combination. The design supports different text generation jobs, consisting of material production, code generation, and question answering, using its support finding out optimization and CoT reasoning capabilities.
The page likewise includes release choices and licensing details to assist you get begun with DeepSeek-R1 in your applications.
3. To begin utilizing DeepSeek-R1, pick Deploy.
You will be prompted to set up the release details for DeepSeek-R1. The design ID will be pre-populated.
4. For Endpoint name, get in an endpoint name (in between 1-50 alphanumeric characters).
5. For disgaeawiki.info Number of circumstances, go into a variety of circumstances (between 1-100).
6. For example type, choose your circumstances type. For ideal efficiency with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is suggested.
Optionally, you can configure advanced security and facilities settings, including virtual private cloud (VPC) networking, service function authorizations, and file encryption settings. For many use cases, the default settings will work well. However, for production implementations, you might wish to examine these settings to align with your company's security and compliance requirements.
7. Choose Deploy to begin using the design.
When the deployment is total, you can check DeepSeek-R1's capabilities straight in the Amazon Bedrock playground.
8. Choose Open in play ground to access an interactive interface where you can experiment with different prompts and change model specifications like temperature and optimum length.
When using R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat design template for optimum outcomes. For example, material for reasoning.
This is an exceptional method to check out the design's reasoning and text generation abilities before incorporating it into your applications. The play area offers instant feedback, assisting you understand how the design reacts to different inputs and letting you fine-tune your prompts for optimum outcomes.
You can quickly evaluate the design in the play ground through the UI. However, to conjure up the deployed model programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.
Run reasoning utilizing guardrails with the deployed DeepSeek-R1 endpoint
The following code example demonstrates how to carry out reasoning utilizing a deployed DeepSeek-R1 design through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have actually produced the guardrail, utilize the following code to execute guardrails. The script initializes the bedrock_runtime customer, configures inference criteria, and sends out a demand to produce text based on a user timely.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, built-in algorithms, and prebuilt ML services that you can release with just a few clicks. With SageMaker JumpStart, you can tailor pre-trained models to your use case, with your data, and release them into production using either the UI or SDK.
Deploying DeepSeek-R1 model through SageMaker JumpStart provides two practical methods: utilizing the instinctive SageMaker JumpStart UI or executing programmatically through the SageMaker Python SDK. Let's explore both approaches to assist you select the technique that best fits your needs.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following steps to deploy DeepSeek-R1 using SageMaker JumpStart:
1. On the SageMaker console, choose Studio in the navigation pane.
2. First-time users will be prompted to produce a domain.
3. On the SageMaker Studio console, pick JumpStart in the navigation pane.
The design browser shows available designs, with details like the company name and model abilities.
4. Search for DeepSeek-R1 to view the DeepSeek-R1 design card.
Each model card shows crucial details, consisting of:
- Model name
- Provider name
- Task classification (for instance, Text Generation).
Bedrock Ready badge (if suitable), indicating that this design can be registered with Amazon Bedrock, allowing you to use Amazon Bedrock APIs to conjure up the design
5. Choose the model card to see the design details page.
The model details page consists of the following details:
- The model name and company details. Deploy button to release the design. About and Notebooks tabs with detailed details
The About tab consists of important details, such as:
- Model description. - License details.
- Technical requirements.
- Usage guidelines
Before you deploy the model, it's recommended to evaluate the model details and license terms to verify compatibility with your usage case.
6. Choose Deploy to proceed with implementation.
7. For Endpoint name, use the instantly generated name or produce a customized one.
- For Instance type ¸ pick a circumstances type (default: ml.p5e.48 xlarge).
- For Initial circumstances count, enter the variety of instances (default: 1). Selecting suitable circumstances types and counts is vital for cost and performance optimization. Monitor your release to change these settings as needed.Under Inference type, Real-time reasoning is selected by default. This is enhanced for sustained traffic and low latency.
- Review all configurations for accuracy. For this design, we highly recommend sticking to SageMaker JumpStart default settings and making certain that network isolation remains in place.
- Choose Deploy to release the design.
The implementation process can take several minutes to complete.
When implementation is total, your endpoint status will alter to InService. At this moment, the model is ready to accept reasoning requests through the endpoint. You can monitor the deployment development on the SageMaker console Endpoints page, which will display pertinent metrics and status details. When the deployment is total, you can conjure up the design utilizing a SageMaker runtime client and integrate it with your applications.
Deploy DeepSeek-R1 using the SageMaker Python SDK
To start with DeepSeek-R1 utilizing the SageMaker Python SDK, you will require to install the SageMaker Python SDK and make certain you have the needed AWS authorizations and environment setup. The following is a detailed code example that demonstrates how to deploy and use DeepSeek-R1 for inference programmatically. The code for releasing the design is supplied in the Github here. You can clone the notebook and run from SageMaker Studio.
You can run extra requests against the predictor:
Implement guardrails and run reasoning with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can likewise utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail using the Amazon Bedrock console or the API, and implement it as displayed in the following code:
Tidy up
To prevent undesirable charges, complete the actions in this section to tidy up your resources.
Delete the Amazon Bedrock Marketplace deployment
If you deployed the design utilizing Amazon Bedrock Marketplace, complete the following actions:
1. On the Amazon Bedrock console, under Foundation models in the navigation pane, pick Marketplace implementations. - In the Managed implementations section, locate the endpoint you desire to erase.
- Select the endpoint, and on the Actions menu, select Delete.
- Verify the endpoint details to make certain you're deleting the appropriate release: 1. Endpoint name.
- Model name.
- Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart model you released will sustain costs if you leave it running. Use the following code to delete the endpoint if you want to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we explored how you can access and deploy the DeepSeek-R1 model using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to start. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting begun with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI companies construct ingenious solutions using AWS services and sped up calculate. Currently, he is concentrated on establishing strategies for fine-tuning and optimizing the inference efficiency of large language models. In his complimentary time, Vivek enjoys hiking, seeing motion pictures, and attempting different cuisines.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.
Jonathan Evans is an Expert Solutions Architect dealing with generative AI with the Third-Party Model Science team at AWS.
Banu Nagasundaram leads product, engineering, and strategic partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is enthusiastic about developing options that help consumers accelerate their AI journey and unlock company worth.