Skip to content

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
  • Sign in / Register
H
hireforeignworkers
  • Project
    • Project
    • Details
    • Activity
    • Cycle Analytics
  • Issues 17
    • Issues 17
    • List
    • Board
    • Labels
    • Milestones
  • Merge Requests 0
    • Merge Requests 0
  • CI / CD
    • CI / CD
    • Pipelines
    • Jobs
    • Schedules
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Collapse sidebar
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
  • Danielle Kayser
  • hireforeignworkers
  • Issues
  • #6

Closed
Open
Opened Feb 09, 2025 by Danielle Kayser@danielle97n766
  • Report abuse
  • New issue
Report abuse New issue

The Verge Stated It's Technologically Impressive


Announced in 2016, Gym is an open-source Python library created to help with the development of reinforcement knowing algorithms. It aimed to standardize how environments are defined in AI research, making released research study more quickly reproducible [24] [144] while offering users with a basic interface for communicating with these environments. In 2022, new developments of Gym have been relocated to the library Gymnasium. [145] [146]
Gym Retro

Released in 2018, Gym Retro is a platform for support learning (RL) research on video games [147] utilizing RL algorithms and study generalization. Prior RL research study focused mainly on enhancing representatives to solve single jobs. Gym Retro provides the ability to generalize in between games with similar concepts but different appearances.

RoboSumo

Released in 2017, RoboSumo is a virtual world where humanoid metalearning robotic representatives at first do not have knowledge of how to even walk, however are given the goals of learning to move and to press the opposing representative out of the ring. [148] Through this adversarial knowing process, the representatives find out how to adapt to changing conditions. When an agent is then removed from this virtual environment and positioned in a brand-new virtual environment with high winds, the representative braces to remain upright, recommending it had actually discovered how to stabilize in a generalized way. [148] [149] OpenAI's Igor Mordatch argued that competitors between agents could create an intelligence "arms race" that might increase an agent's capability to work even outside the context of the competition. [148]
OpenAI 5

OpenAI Five is a team of 5 OpenAI-curated bots utilized in the competitive five-on-five video game Dota 2, that discover to play against human players at a high ability level totally through experimental algorithms. Before becoming a team of 5, the first public demonstration occurred at The International 2017, the annual premiere championship tournament for the game, where Dendi, an expert Ukrainian player, lost against a bot in a live individually match. [150] [151] After the match, CTO Greg Brockman explained that the bot had actually found out by playing against itself for two weeks of real time, and that the learning software was an action in the direction of creating software application that can handle complicated tasks like a cosmetic surgeon. [152] [153] The system uses a form of reinforcement learning, as the bots learn in time by playing against themselves hundreds of times a day for months, and are rewarded for actions such as eliminating an opponent and taking map goals. [154] [155] [156]
By June 2018, the capability of the bots broadened to play together as a complete group of 5, and they were able to beat teams of amateur and wiki.asexuality.org semi-professional players. [157] [154] [158] [159] At The International 2018, OpenAI Five played in two exhibit matches against expert players, but wound up losing both games. [160] [161] [162] In April 2019, OpenAI Five beat OG, the ruling world champions of the game at the time, 2:0 in a live exhibit match in San Francisco. [163] [164] The bots' last public look came later on that month, where they played in 42,729 total games in a four-day open online competition, winning 99.4% of those video games. [165]
OpenAI 5's systems in Dota 2's bot player shows the challenges of AI systems in multiplayer online fight arena (MOBA) video games and how OpenAI Five has demonstrated using deep reinforcement learning (DRL) representatives to skills in Dota 2 matches. [166]
Dactyl

Developed in 2018, Dactyl utilizes device discovering to train a Shadow Hand, a human-like robotic hand, to manipulate physical things. [167] It finds out entirely in simulation utilizing the same RL algorithms and training code as OpenAI Five. OpenAI tackled the item orientation issue by utilizing domain randomization, a simulation approach which exposes the learner to a variety of experiences rather than attempting to fit to truth. The set-up for Dactyl, aside from having motion tracking electronic cameras, likewise has RGB cameras to enable the robotic to control an approximate things by seeing it. In 2018, OpenAI revealed that the system was able to control a cube and an octagonal prism. [168]
In 2019, OpenAI demonstrated that Dactyl could resolve a Rubik's Cube. The robotic was able to fix the puzzle 60% of the time. Objects like the Rubik's Cube introduce complicated physics that is harder to model. OpenAI did this by enhancing the robustness of Dactyl to perturbations by using Automatic Domain Randomization (ADR), a simulation technique of creating progressively harder environments. ADR varies from manual domain randomization by not requiring a human to define randomization varieties. [169]
API

In June 2020, gratisafhalen.be OpenAI revealed a multi-purpose API which it said was "for accessing brand-new AI models established by OpenAI" to let developers get in touch with it for "any English language AI job". [170] [171]
Text generation

The business has promoted generative pretrained transformers (GPT). [172]
OpenAI's initial GPT design ("GPT-1")

The original paper on generative pre-training of a transformer-based language model was written by Alec Radford and his colleagues, and released in preprint on OpenAI's website on June 11, 2018. [173] It revealed how a generative design of language could obtain world understanding and process long-range dependences by pre-training on a varied corpus with long stretches of adjoining text.

GPT-2

Generative Pre-trained Transformer 2 ("GPT-2") is a not being watched transformer language model and the follower to OpenAI's initial GPT design ("GPT-1"). GPT-2 was announced in February 2019, with only minimal demonstrative variations at first released to the general public. The complete version of GPT-2 was not right away released due to issue about possible misuse, including applications for composing phony news. [174] Some professionals expressed uncertainty that GPT-2 presented a substantial threat.

In response to GPT-2, the Allen Institute for Artificial Intelligence responded with a tool to discover "neural phony news". [175] Other researchers, such as Jeremy Howard, warned of "the innovation to absolutely fill Twitter, email, and the web up with reasonable-sounding, context-appropriate prose, which would drown out all other speech and be impossible to filter". [176] In November 2019, OpenAI released the complete variation of the GPT-2 language design. [177] Several sites host interactive presentations of different circumstances of GPT-2 and other transformer models. [178] [179] [180]
GPT-2's authors argue without supervision language designs to be general-purpose learners, illustrated by GPT-2 attaining advanced accuracy and perplexity on 7 of 8 zero-shot jobs (i.e. the design was not further trained on any task-specific input-output examples).

The corpus it was trained on, called WebText, contains a little 40 gigabytes of text from URLs shared in Reddit submissions with a minimum of 3 upvotes. It avoids certain issues encoding vocabulary with word tokens by utilizing byte pair encoding. This permits representing any string of characters by encoding both individual characters and multiple-character tokens. [181]
GPT-3

First explained in May 2020, Generative Pre-trained [a] Transformer 3 (GPT-3) is a without supervision transformer language model and the follower to GPT-2. [182] [183] [184] OpenAI mentioned that the full version of GPT-3 contained 175 billion parameters, [184] two orders of magnitude larger than the 1.5 billion [185] in the full version of GPT-2 (although GPT-3 models with as couple of as 125 million specifications were likewise trained). [186]
OpenAI specified that GPT-3 was successful at certain "meta-learning" tasks and could generalize the function of a single input-output pair. The GPT-3 release paper gave examples of translation and cross-linguistic transfer learning between English and Romanian, and in between English and German. [184]
GPT-3 significantly enhanced benchmark outcomes over GPT-2. OpenAI cautioned that such scaling-up of language models could be approaching or experiencing the basic ability constraints of predictive language designs. [187] Pre-training GPT-3 required a number of thousand petaflop/s-days [b] of calculate, compared to 10s of petaflop/s-days for the full GPT-2 model. [184] Like its predecessor, [174] the GPT-3 trained model was not instantly launched to the public for issues of possible abuse, although OpenAI prepared to permit gain access to through a paid cloud API after a two-month complimentary private beta that started in June 2020. [170] [189]
On September 23, 2020, GPT-3 was licensed solely to Microsoft. [190] [191]
Codex

Announced in mid-2021, Codex is a descendant of GPT-3 that has in addition been trained on code from 54 million GitHub repositories, [192] [193] and is the AI powering the code autocompletion tool GitHub Copilot. [193] In August 2021, an API was released in personal beta. [194] According to OpenAI, the design can develop working code in over a lots programs languages, many effectively in Python. [192]
Several issues with problems, style defects and security vulnerabilities were cited. [195] [196]
GitHub Copilot has been accused of releasing copyrighted code, without any author attribution or license. [197]
OpenAI announced that they would stop support for Codex API on March 23, 2023. [198]
GPT-4

On March 14, 2023, OpenAI announced the release of Generative Pre-trained Transformer 4 (GPT-4), efficient in accepting text or image inputs. [199] They announced that the updated innovation passed a simulated law school bar exam with a rating around the top 10% of test takers. (By contrast, GPT-3.5 scored around the bottom 10%.) They said that GPT-4 might likewise read, examine or produce approximately 25,000 words of text, and write code in all significant shows languages. [200]
Observers reported that the version of ChatGPT utilizing GPT-4 was an enhancement on the previous GPT-3.5-based iteration, with the caveat that GPT-4 retained some of the problems with earlier modifications. [201] GPT-4 is likewise capable of taking images as input on ChatGPT. [202] OpenAI has decreased to reveal different technical details and stats about GPT-4, such as the exact size of the design. [203]
GPT-4o

On May 13, 2024, OpenAI announced and released GPT-4o, which can process and produce text, images and audio. [204] GPT-4o attained advanced lead to voice, multilingual, and vision benchmarks, setting brand-new records in audio speech acknowledgment and translation. [205] [206] It scored 88.7% on the Massive Multitask Language Understanding (MMLU) standard compared to 86.5% by GPT-4. [207]
On July 18, 2024, OpenAI launched GPT-4o mini, a smaller sized version of GPT-4o changing GPT-3.5 Turbo on the ChatGPT user interface. Its API costs $0.15 per million input tokens and $0.60 per million output tokens, compared to $5 and $15 respectively for GPT-4o. OpenAI expects it to be particularly helpful for business, start-ups and designers seeking to automate services with AI agents. [208]
o1

On September 12, 2024, OpenAI launched the o1-preview and o1-mini models, which have actually been developed to take more time to consider their actions, causing greater accuracy. These designs are especially reliable in science, coding, and thinking jobs, and were made available to ChatGPT Plus and Staff member. [209] [210] In December 2024, o1-preview was changed by o1. [211]
o3

On December 20, 2024, OpenAI unveiled o3, the follower of the o1 reasoning design. OpenAI also revealed o3-mini, gratisafhalen.be a lighter and faster variation of OpenAI o3. As of December 21, 2024, this design is not available for public usage. According to OpenAI, they are checking o3 and o3-mini. [212] [213] Until January 10, 2025, larsaluarna.se safety and security scientists had the chance to obtain early access to these models. [214] The model is called o3 instead of o2 to prevent confusion with telecoms companies O2. [215]
Deep research

Deep research is a representative established by OpenAI, revealed on February 2, 2025. It leverages the capabilities of OpenAI's o3 model to carry out substantial web browsing, data analysis, and synthesis, providing detailed reports within a timeframe of 5 to 30 minutes. [216] With browsing and Python tools made it possible for, it reached a precision of 26.6 percent on HLE (Humanity's Last Exam) criteria. [120]
Image classification

CLIP

Revealed in 2021, CLIP (Contrastive Language-Image Pre-training) is a model that is trained to examine the semantic similarity between text and images. It can especially be used for image classification. [217]
Text-to-image

DALL-E

Revealed in 2021, DALL-E is a Transformer design that creates images from textual descriptions. [218] DALL-E uses a 12-billion-parameter version of GPT-3 to interpret natural language inputs (such as "a green leather handbag formed like a pentagon" or "an isometric view of an unfortunate capybara") and produce corresponding images. It can produce images of realistic things ("a stained-glass window with an image of a blue strawberry") along with things that do not exist in truth ("a cube with the texture of a porcupine"). Since March 2021, no API or code is available.

DALL-E 2

In April 2022, OpenAI announced DALL-E 2, an updated version of the model with more sensible results. [219] In December 2022, OpenAI released on GitHub software for Point-E, a new simple system for transforming a text description into a 3-dimensional design. [220]
DALL-E 3

In September 2023, OpenAI revealed DALL-E 3, a more powerful design much better able to create images from complicated descriptions without manual prompt engineering and render complicated details like hands and text. [221] It was released to the public as a ChatGPT Plus function in October. [222]
Text-to-video

Sora

Sora is a text-to-video model that can create videos based upon brief detailed prompts [223] along with extend existing videos forwards or backwards in time. [224] It can create videos with resolution as much as 1920x1080 or 1080x1920. The maximal length of generated videos is unidentified.

Sora's advancement group named it after the Japanese word for "sky", to symbolize its "endless innovative capacity". [223] Sora's technology is an adjustment of the innovation behind the DALL · E 3 text-to-image design. [225] OpenAI trained the system utilizing publicly-available videos along with copyrighted videos certified for that function, but did not expose the number or the precise sources of the videos. [223]
OpenAI showed some Sora-created high-definition videos to the general public on February 15, 2024, mentioning that it could generate videos approximately one minute long. It also shared a technical report highlighting the methods utilized to train the model, and the design's abilities. [225] It acknowledged a few of its imperfections, including struggles replicating complicated physics. [226] Will Douglas Heaven of the MIT Technology Review called the demonstration videos "remarkable", however kept in mind that they should have been cherry-picked and might not represent Sora's typical output. [225]
Despite uncertainty from some academic leaders following Sora's public demonstration, noteworthy entertainment-industry figures have shown significant interest in the technology's potential. In an interview, actor/filmmaker Tyler Perry revealed his awe at the innovation's capability to create sensible video from text descriptions, citing its prospective to transform storytelling and content development. He said that his excitement about Sora's possibilities was so strong that he had actually decided to pause prepare for broadening his Atlanta-based film studio. [227]
Speech-to-text

Whisper

Released in 2022, Whisper is a general-purpose speech recognition design. [228] It is trained on a large dataset of diverse audio and is likewise a multi-task model that can perform multilingual speech recognition as well as speech translation and language recognition. [229]
Music generation

MuseNet

Released in 2019, MuseNet is a deep neural net trained to anticipate subsequent musical notes in MIDI music files. It can produce tunes with 10 instruments in 15 styles. According to The Verge, a song created by MuseNet tends to start fairly but then fall under chaos the longer it plays. [230] [231] In pop culture, preliminary applications of this tool were utilized as early as 2020 for the web mental thriller Ben Drowned to produce music for the titular character. [232] [233]
Jukebox

Released in 2020, Jukebox is an open-sourced algorithm to produce music with vocals. After training on 1.2 million samples, the system accepts a genre, artist, and a bit of lyrics and outputs tune samples. OpenAI stated the songs "reveal local musical coherence [and] follow standard chord patterns" however acknowledged that the tunes do not have "familiar bigger musical structures such as choruses that repeat" and that "there is a substantial gap" in between Jukebox and human-generated music. The Verge stated "It's technically impressive, even if the results seem like mushy versions of songs that may feel familiar", while Business Insider mentioned "surprisingly, some of the resulting tunes are memorable and sound legitimate". [234] [235] [236]
Interface

Debate Game

In 2018, OpenAI launched the Debate Game, which teaches makers to debate toy problems in front of a human judge. The purpose is to research whether such an approach may assist in auditing AI decisions and in establishing explainable AI. [237] [238]
Microscope

Released in 2020, Microscope [239] is a collection of visualizations of every considerable layer and nerve cell of 8 neural network models which are frequently studied in interpretability. [240] Microscope was created to examine the features that form inside these neural networks easily. The designs consisted of are AlexNet, VGG-19, various variations of Inception, and various variations of CLIP Resnet. [241]
ChatGPT

Launched in November 2022, ChatGPT is an expert system tool constructed on top of GPT-3 that supplies a conversational user interface that permits users to ask questions in natural language. The system then responds with an answer within seconds.

Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking
None
Due date
No due date
0
Labels
None
Assign labels
  • View project labels
Reference: danielle97n766/hireforeignworkers#6