DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Today, we are thrilled to reveal that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier design, DeepSeek-R1, in addition to the distilled variations ranging from 1.5 to 70 billion specifications to build, experiment, and responsibly scale your generative AI concepts on AWS.
In this post, we show how to begin with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar steps to deploy the distilled variations of the models as well.
Overview of DeepSeek-R1
DeepSeek-R1 is a big language design (LLM) developed by DeepSeek AI that utilizes reinforcement finding out to boost thinking capabilities through a multi-stage training process from a DeepSeek-V3-Base structure. A key identifying feature is its reinforcement learning (RL) step, which was utilized to improve the design's reactions beyond the basic pre-training and tweak process. By integrating RL, DeepSeek-R1 can adjust more efficiently to user feedback and goals, ultimately enhancing both significance and clearness. In addition, DeepSeek-R1 employs a chain-of-thought (CoT) approach, meaning it's geared up to break down intricate queries and reason through them in a detailed way. This guided reasoning procedure allows the model to produce more precise, transparent, and detailed answers. This design combines RL-based fine-tuning with CoT capabilities, aiming to generate structured responses while concentrating on interpretability and user interaction. With its wide-ranging abilities DeepSeek-R1 has actually recorded the industry's attention as a versatile text-generation model that can be incorporated into various workflows such as representatives, logical thinking and information analysis tasks.
DeepSeek-R1 utilizes a Mix of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture permits activation of 37 billion criteria, enabling effective inference by routing inquiries to the most relevant expert "clusters." This method permits the model to focus on various issue domains while maintaining overall performance. DeepSeek-R1 needs a minimum of 800 GB of HBM memory in FP8 format for reasoning. In this post, we will utilize an ml.p5e.48 xlarge circumstances to release the design. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs providing 1128 GB of GPU memory.
DeepSeek-R1 distilled designs bring the reasoning capabilities of the main R1 design to more effective architectures based upon popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a process of training smaller, more effective designs to imitate the habits and reasoning patterns of the bigger DeepSeek-R1 model, using it as an instructor design.
You can deploy DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we recommend releasing this design with guardrails in place. In this blog, we will utilize Amazon Bedrock Guardrails to introduce safeguards, avoid damaging content, and assess designs against essential security requirements. At the time of composing this blog, for DeepSeek-R1 deployments on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can develop numerous guardrails tailored to various usage cases and use them to the DeepSeek-R1 model, enhancing user experiences and standardizing security controls across your generative AI applications.
Prerequisites
To deploy the DeepSeek-R1 model, you require access to an ml.p5e circumstances. To check if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and confirm you're utilizing ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are deploying. To ask for a limit increase, develop a limit increase demand and reach out to your account group.
Because you will be deploying this model with Amazon Bedrock Guardrails, make certain you have the proper AWS Identity and Gain Access To Management (IAM) permissions to utilize Amazon Bedrock Guardrails. For instructions, see Set up approvals to utilize guardrails for material filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails permits you to introduce safeguards, prevent harmful content, and examine designs against key safety criteria. You can carry out precaution for the DeepSeek-R1 model using the Amazon Bedrock ApplyGuardrail API. This allows you to apply guardrails to evaluate user inputs and design actions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo.
The general circulation involves the following steps: First, the system receives an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the model for inference. After receiving the model's output, another guardrail check is applied. If the output passes this last check, it's returned as the outcome. However, if either the input or output is intervened by the guardrail, a message is returned indicating the nature of the intervention and whether it occurred at the input or output stage. The examples showcased in the following areas show reasoning using this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace provides you access to over 100 popular, emerging, and specialized foundation designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following actions:
1. On the Amazon Bedrock console, select Model catalog under Foundation models in the navigation pane.
At the time of writing this post, you can utilize the InvokeModel API to conjure up the model. It does not support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a supplier and choose the DeepSeek-R1 model.
The design detail page offers necessary details about the design's capabilities, rates structure, and implementation guidelines. You can find detailed use instructions, including sample API calls and code snippets for integration. The model supports numerous text generation jobs, including content creation, code generation, and concern answering, using its reinforcement finding out optimization and CoT thinking capabilities.
The page likewise consists of implementation choices and licensing details to assist you get begun with DeepSeek-R1 in your applications.
3. To start utilizing DeepSeek-R1, select Deploy.
You will be prompted to configure the implementation details for DeepSeek-R1. The model ID will be pre-populated.
4. For Endpoint name, get in an endpoint name (in between 1-50 alphanumeric characters).
5. For Variety of instances, enter a variety of circumstances (between 1-100).
6. For example type, choose your instance type. For optimal efficiency with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is suggested.
Optionally, you can set up sophisticated security and facilities settings, including virtual private cloud (VPC) networking, service role consents, and oeclub.org file encryption settings. For most utilize cases, the default settings will work well. However, for production releases, you might wish to evaluate these settings to align with your organization's security and compliance requirements.
7. Choose Deploy to begin using the design.
When the implementation is complete, you can check DeepSeek-R1's capabilities straight in the Amazon Bedrock play area.
8. Choose Open in playground to access an interactive interface where you can experiment with different triggers and change model criteria like temperature and optimum length.
When using R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat design template for ideal outcomes. For instance, content for inference.
This is an exceptional way to check out the design's reasoning and text generation abilities before incorporating it into your applications. The playground supplies immediate feedback, assisting you understand how the design responds to different inputs and letting you tweak your triggers for optimal results.
You can quickly test the model in the play area through the UI. However, to invoke the released design programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.
Run reasoning utilizing guardrails with the released DeepSeek-R1 endpoint
The following code example demonstrates how to perform reasoning using a DeepSeek-R1 design through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can develop a guardrail utilizing the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have produced the guardrail, utilize the following code to carry out guardrails. The script initializes the bedrock_runtime client, sets up inference parameters, and sends a request to create text based on a user timely.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, integrated algorithms, and prebuilt ML services that you can deploy with simply a few clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your usage case, with your data, and release them into production utilizing either the UI or SDK.
Deploying DeepSeek-R1 design through SageMaker JumpStart offers two hassle-free techniques: utilizing the user-friendly SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's check out both techniques to help you select the approach that best suits your needs.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following actions to deploy DeepSeek-R1 utilizing SageMaker JumpStart:
1. On the SageMaker console, select Studio in the navigation pane.
2. First-time users will be prompted to create a domain.
3. On the SageMaker Studio console, pick JumpStart in the navigation pane.
The model internet browser displays available designs, with details like the supplier name and model abilities.
4. Search for DeepSeek-R1 to see the DeepSeek-R1 model card.
Each model card reveals essential details, consisting of:
- Model name
- Provider name
- Task category (for instance, Text Generation).
Bedrock Ready badge (if relevant), indicating that this design can be signed up with Amazon Bedrock, enabling you to use Amazon Bedrock APIs to invoke the design
5. Choose the model card to view the model details page.
The design details page includes the following details:
- The model name and supplier details. Deploy button to deploy the design. About and Notebooks tabs with detailed details
The About tab consists of crucial details, such as:
- Model description. - License details.
- Technical specs.
- Usage standards
Before you deploy the design, it's recommended to examine the design details and license terms to confirm compatibility with your use case.
6. Choose Deploy to continue with deployment.
7. For Endpoint name, utilize the automatically produced name or develop a customized one.
- For example type ¸ choose an instance type (default: ml.p5e.48 xlarge).
- For Initial instance count, enter the variety of circumstances (default: 1). Selecting appropriate instance types and counts is vital for cost and performance optimization. Monitor your deployment to change these settings as needed.Under Inference type, Real-time reasoning is picked by default. This is enhanced for sustained traffic and low latency.
- Review all configurations for precision. For this model, we highly advise sticking to SageMaker JumpStart default settings and making certain that network seclusion remains in place.
- Choose Deploy to release the model.
The implementation procedure can take a number of minutes to complete.
When deployment is total, your endpoint status will change to InService. At this point, the model is all set to accept reasoning demands through the endpoint. You can keep an eye on the release progress on the SageMaker console Endpoints page, which will display relevant metrics and status details. When the deployment is total, you can conjure up the design utilizing a SageMaker runtime customer and incorporate it with your applications.
Deploy DeepSeek-R1 utilizing the SageMaker Python SDK
To start with DeepSeek-R1 using the SageMaker Python SDK, you will require to install the SageMaker Python SDK and make certain you have the required AWS approvals and environment setup. The following is a detailed code example that demonstrates how to deploy and utilize DeepSeek-R1 for reasoning programmatically. The code for releasing the model is offered in the Github here. You can clone the note pad and range from SageMaker Studio.
You can run additional requests against the predictor:
Implement guardrails and run reasoning with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can also use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail utilizing the Amazon Bedrock console or the API, and implement it as displayed in the following code:
Tidy up
To prevent undesirable charges, finish the actions in this section to tidy up your resources.
Delete the Amazon Bedrock Marketplace implementation
If you deployed the design using Amazon Bedrock Marketplace, total the following steps:
1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, select Marketplace releases. - In the Managed releases section, locate the endpoint you wish to erase.
- Select the endpoint, and on the Actions menu, choose Delete.
- Verify the endpoint details to make certain you're deleting the proper release: 1. Endpoint name.
- Model name.
- Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart model you deployed will sustain costs if you leave it running. Use the following code to erase the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we explored how you can access and deploy the DeepSeek-R1 model utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get started. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Beginning with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI companies construct innovative options using AWS services and accelerated compute. Currently, he is focused on developing strategies for fine-tuning and optimizing the reasoning efficiency of large language designs. In his leisure time, Vivek enjoys treking, watching movies, and attempting different cuisines.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.
Jonathan Evans is a Specialist Solutions Architect working on generative AI with the Third-Party Model Science team at AWS.
Banu Nagasundaram leads product, engineering, and tactical collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is enthusiastic about developing solutions that assist consumers accelerate their AI journey and unlock service worth.