Skip to content

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
  • Sign in / Register
X
xcoder
  • Project
    • Project
    • Details
    • Activity
    • Cycle Analytics
  • Issues 3
    • Issues 3
    • List
    • Board
    • Labels
    • Milestones
  • Merge Requests 0
    • Merge Requests 0
  • CI / CD
    • CI / CD
    • Pipelines
    • Jobs
    • Schedules
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Collapse sidebar
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
  • Alfred Greener
  • xcoder
  • Issues
  • #1

Closed
Open
Opened Mar 05, 2025 by Alfred Greener@alfredgreener5
  • Report abuse
  • New issue
Report abuse New issue

The Verge Stated It's Technologically Impressive


Announced in 2016, Gym is an open-source Python library designed to assist in the development of reinforcement knowing algorithms. It aimed to standardize how environments are specified in AI research study, making published research more easily reproducible [24] [144] while providing users with a basic user interface for interacting with these environments. In 2022, new advancements of Gym have actually been moved to the library Gymnasium. [145] [146]
Gym Retro

Released in 2018, Gym Retro is a platform for reinforcement learning (RL) research on computer game [147] utilizing RL algorithms and study generalization. Prior RL research study focused mainly on enhancing representatives to fix single tasks. Gym Retro offers the capability to generalize between games with similar ideas however different appearances.

RoboSumo

Released in 2017, RoboSumo is a virtual world where humanoid metalearning robotic representatives initially lack understanding of how to even stroll, however are offered the objectives of discovering to move and to press the opposing representative out of the ring. [148] Through this adversarial knowing process, the representatives find out how to adjust to altering conditions. When an agent is then eliminated from this virtual environment and positioned in a brand-new virtual environment with high winds, the agent braces to remain upright, recommending it had actually discovered how to stabilize in a generalized method. [148] [149] OpenAI's Igor Mordatch argued that competitors between agents could develop an intelligence "arms race" that could increase an agent's ability to work even outside the context of the competitors. [148]
OpenAI 5

OpenAI Five is a group of 5 OpenAI-curated bots utilized in the competitive five-on-five video game Dota 2, that learn to play against human players at a high ability level entirely through trial-and-error algorithms. Before ending up being a team of 5, the very first public demonstration occurred at The International 2017, the annual premiere championship competition for the video game, where Dendi, a professional Ukrainian gamer, lost against a bot in a live individually matchup. [150] [151] After the match, CTO Greg Brockman explained that the bot had actually found out by playing against itself for 2 weeks of actual time, and that the knowing software was a step in the direction of creating software application that can manage intricate jobs like a surgeon. [152] [153] The system uses a type of reinforcement learning, as the bots discover gradually by playing against themselves hundreds of times a day for months, and are rewarded for actions such as eliminating an opponent and taking map goals. [154] [155] [156]
By June 2018, the capability of the bots broadened to play together as a complete group of 5, and they were able to beat groups of amateur and semi-professional gamers. [157] [154] [158] [159] At The International 2018, OpenAI Five played in 2 exhibit matches against expert players, but wound up losing both . [160] [161] [162] In April 2019, OpenAI Five defeated OG, the reigning world champions of the game at the time, 2:0 in a live exhibit match in San Francisco. [163] [164] The bots' last public look came later on that month, where they played in 42,729 overall games in a four-day open online competitors, winning 99.4% of those games. [165]
OpenAI 5's systems in Dota 2's bot player shows the challenges of AI systems in multiplayer online battle arena (MOBA) video games and how OpenAI Five has actually shown using deep support knowing (DRL) agents to attain superhuman skills in Dota 2 matches. [166]
Dactyl

Developed in 2018, Dactyl utilizes machine discovering to train a Shadow Hand, a human-like robot hand, to manipulate physical objects. [167] It discovers completely in simulation utilizing the same RL algorithms and training code as OpenAI Five. OpenAI tackled the things orientation problem by utilizing domain randomization, a simulation approach which exposes the student to a range of experiences rather than attempting to fit to truth. The set-up for Dactyl, aside from having movement tracking cams, likewise has RGB electronic cameras to enable the robotic to control an arbitrary item by seeing it. In 2018, OpenAI revealed that the system was able to control a cube and an octagonal prism. [168]
In 2019, OpenAI showed that Dactyl could fix a Rubik's Cube. The robotic was able to fix the puzzle 60% of the time. Objects like the Rubik's Cube introduce intricate physics that is harder to design. OpenAI did this by improving the effectiveness of Dactyl to perturbations by utilizing Automatic Domain Randomization (ADR), a simulation method of producing gradually harder environments. ADR differs from manual domain randomization by not needing a human to define randomization ranges. [169]
API

In June 2020, OpenAI revealed a multi-purpose API which it said was "for accessing brand-new AI designs established by OpenAI" to let designers call on it for "any English language AI job". [170] [171]
Text generation

The company has popularized generative pretrained transformers (GPT). [172]
OpenAI's original GPT model ("GPT-1")

The original paper on generative pre-training of a transformer-based language design was written by Alec Radford and his coworkers, and released in preprint on OpenAI's website on June 11, 2018. [173] It revealed how a generative design of language could obtain world understanding and procedure long-range reliances by pre-training on a diverse corpus with long stretches of adjoining text.

GPT-2

Generative Pre-trained Transformer 2 ("GPT-2") is a without supervision transformer language model and the successor to OpenAI's initial GPT design ("GPT-1"). GPT-2 was revealed in February 2019, with only restricted demonstrative variations initially launched to the general public. The full variation of GPT-2 was not instantly released due to issue about prospective abuse, consisting of applications for composing fake news. [174] Some professionals revealed uncertainty that GPT-2 positioned a significant danger.

In reaction to GPT-2, the Allen Institute for Artificial Intelligence reacted with a tool to discover "neural phony news". [175] Other scientists, such as Jeremy Howard, cautioned of "the innovation to completely fill Twitter, email, and the web up with reasonable-sounding, context-appropriate prose, which would drown out all other speech and be difficult to filter". [176] In November 2019, OpenAI launched the total variation of the GPT-2 language design. [177] Several sites host interactive demonstrations of different instances of GPT-2 and other transformer models. [178] [179] [180]
GPT-2's authors argue without supervision language designs to be general-purpose learners, shown by GPT-2 attaining cutting edge precision and perplexity on 7 of 8 zero-shot tasks (i.e. the model was not more trained on any task-specific input-output examples).

The corpus it was trained on, called WebText, contains a little 40 gigabytes of text from URLs shared in Reddit submissions with a minimum of 3 upvotes. It avoids certain issues encoding vocabulary with word tokens by utilizing byte pair encoding. This permits representing any string of characters by encoding both private characters and multiple-character tokens. [181]
GPT-3

First explained in May 2020, Generative Pre-trained [a] Transformer 3 (GPT-3) is an unsupervised transformer language model and the follower to GPT-2. [182] [183] [184] OpenAI mentioned that the full variation of GPT-3 contained 175 billion specifications, [184] 2 orders of magnitude bigger than the 1.5 billion [185] in the full version of GPT-2 (although GPT-3 models with as couple of as 125 million specifications were also trained). [186]
OpenAI stated that GPT-3 succeeded at certain "meta-learning" jobs and could generalize the purpose of a single input-output pair. The GPT-3 release paper offered examples of translation and cross-linguistic transfer knowing between English and Romanian, and in between English and German. [184]
GPT-3 dramatically enhanced benchmark outcomes over GPT-2. OpenAI warned that such scaling-up of language models could be approaching or coming across the fundamental ability constraints of predictive language models. [187] Pre-training GPT-3 needed numerous thousand petaflop/s-days [b] of calculate, compared to tens of petaflop/s-days for the full GPT-2 model. [184] Like its predecessor, [174] the GPT-3 trained design was not instantly launched to the general public for issues of possible abuse, although OpenAI planned to permit gain access to through a paid cloud API after a two-month complimentary private beta that started in June 2020. [170] [189]
On September 23, 2020, GPT-3 was licensed specifically to Microsoft. [190] [191]
Codex

Announced in mid-2021, Codex is a descendant of GPT-3 that has in addition been trained on code from 54 million GitHub repositories, [192] [193] and is the AI powering the code autocompletion tool GitHub Copilot. [193] In August 2021, an API was released in personal beta. [194] According to OpenAI, the design can produce working code in over a lots programming languages, a lot of efficiently in Python. [192]
Several problems with glitches, style defects and security vulnerabilities were pointed out. [195] [196]
GitHub Copilot has been accused of producing copyrighted code, without any author attribution or license. [197]
OpenAI revealed that they would terminate support for Codex API on March 23, 89u89.com 2023. [198]
GPT-4

On March 14, 2023, OpenAI revealed the release of Generative Pre-trained Transformer 4 (GPT-4), capable of accepting text or image inputs. [199] They announced that the updated technology passed a simulated law school bar examination with a rating around the leading 10% of test takers. (By contrast, GPT-3.5 scored around the bottom 10%.) They said that GPT-4 could also read, evaluate or generate up to 25,000 words of text, and write code in all significant shows languages. [200]
Observers reported that the model of ChatGPT utilizing GPT-4 was an enhancement on the previous GPT-3.5-based version, with the caveat that GPT-4 retained some of the problems with earlier modifications. [201] GPT-4 is also efficient in taking images as input on ChatGPT. [202] OpenAI has decreased to expose numerous technical details and stats about GPT-4, such as the precise size of the model. [203]
GPT-4o

On May 13, 2024, OpenAI revealed and released GPT-4o, which can process and create text, images and audio. [204] GPT-4o attained modern lead to voice, multilingual, and vision standards, setting brand-new records in audio speech acknowledgment and translation. [205] [206] It scored 88.7% on the Massive Multitask Language Understanding (MMLU) criteria compared to 86.5% by GPT-4. [207]
On July 18, 2024, OpenAI released GPT-4o mini, a smaller sized variation of GPT-4o replacing GPT-3.5 Turbo on the ChatGPT interface. Its API costs $0.15 per million input tokens and $0.60 per million output tokens, compared to $5 and $15 respectively for GPT-4o. OpenAI anticipates it to be especially helpful for enterprises, startups and designers seeking to automate services with AI representatives. [208]
o1

On September 12, 2024, larsaluarna.se OpenAI released the o1-preview and o1-mini designs, which have been created to take more time to consider their reactions, leading to higher accuracy. These models are especially reliable in science, coding, gratisafhalen.be and reasoning tasks, and were made available to ChatGPT Plus and Staff member. [209] [210] In December 2024, o1-preview was replaced by o1. [211]
o3

On December 20, 2024, OpenAI unveiled o3, the successor of the o1 reasoning design. OpenAI likewise revealed o3-mini, a lighter and much faster variation of OpenAI o3. As of December 21, 2024, this design is not available for public usage. According to OpenAI, they are checking o3 and o3-mini. [212] [213] Until January 10, 2025, safety and security scientists had the opportunity to obtain early access to these designs. [214] The design is called o3 instead of o2 to avoid confusion with telecoms companies O2. [215]
Deep research

Deep research is a representative established by OpenAI, revealed on February 2, 2025. It leverages the capabilities of OpenAI's o3 design to perform extensive web browsing, data analysis, and synthesis, providing detailed reports within a timeframe of 5 to thirty minutes. [216] With searching and Python tools allowed, it reached an accuracy of 26.6 percent on HLE (Humanity's Last Exam) standard. [120]
Image classification

CLIP

Revealed in 2021, CLIP (Contrastive Language-Image Pre-training) is a design that is trained to evaluate the semantic resemblance in between text and images. It can significantly be utilized for image classification. [217]
Text-to-image

DALL-E

Revealed in 2021, DALL-E is a Transformer design that produces images from textual descriptions. [218] DALL-E uses a 12-billion-parameter version of GPT-3 to interpret natural language inputs (such as "a green leather purse formed like a pentagon" or "an isometric view of a sad capybara") and generate matching images. It can develop pictures of practical objects ("a stained-glass window with a picture of a blue strawberry") as well as items that do not exist in truth ("a cube with the texture of a porcupine"). As of March 2021, surgiteams.com no API or code is available.

DALL-E 2

In April 2022, OpenAI announced DALL-E 2, an updated version of the design with more sensible results. [219] In December 2022, OpenAI published on GitHub software for Point-E, a brand-new rudimentary system for transforming a text description into a 3-dimensional design. [220]
DALL-E 3

In September 2023, OpenAI announced DALL-E 3, a more effective design much better able to produce images from intricate descriptions without manual prompt engineering and render intricate details like hands and text. [221] It was released to the public as a ChatGPT Plus function in October. [222]
Text-to-video

Sora

Sora is a text-to-video design that can produce videos based upon brief detailed prompts [223] as well as extend existing videos forwards or in reverse in time. [224] It can create videos with resolution as much as 1920x1080 or 1080x1920. The optimum length of produced videos is unknown.

Sora's advancement group named it after the Japanese word for "sky", to represent its "unlimited creative potential". [223] Sora's innovation is an adaptation of the innovation behind the DALL · E 3 text-to-image model. [225] OpenAI trained the system utilizing publicly-available videos in addition to copyrighted videos licensed for that function, but did not expose the number or the specific sources of the videos. [223]
OpenAI showed some Sora-created high-definition videos to the general public on February 15, 2024, stating that it could generate videos approximately one minute long. It likewise shared a technical report highlighting the techniques utilized to train the design, and the design's capabilities. [225] It acknowledged some of its drawbacks, including struggles imitating intricate physics. [226] Will Douglas Heaven of the MIT Technology Review called the presentation videos "remarkable", however noted that they must have been cherry-picked and might not represent Sora's typical output. [225]
Despite uncertainty from some academic leaders following Sora's public demonstration, noteworthy entertainment-industry figures have actually shown significant interest in the innovation's potential. In an interview, actor/filmmaker Tyler Perry expressed his awe at the technology's capability to produce reasonable video from text descriptions, citing its potential to revolutionize storytelling and content development. He said that his enjoyment about Sora's possibilities was so strong that he had actually decided to stop briefly prepare for broadening his Atlanta-based motion picture studio. [227]
Speech-to-text

Whisper

Released in 2022, Whisper is a general-purpose speech recognition design. [228] It is trained on a large dataset of diverse audio and is likewise a multi-task design that can carry out multilingual speech recognition as well as speech translation and language identification. [229]
Music generation

MuseNet

Released in 2019, MuseNet is a deep neural net trained to forecast subsequent musical notes in MIDI music files. It can generate tunes with 10 instruments in 15 styles. According to The Verge, a song created by MuseNet tends to start fairly however then fall under turmoil the longer it plays. [230] [231] In pop culture, initial applications of this tool were utilized as early as 2020 for the internet mental thriller Ben Drowned to produce music for the titular character. [232] [233]
Jukebox

Released in 2020, Jukebox is an open-sourced algorithm to generate music with vocals. After training on 1.2 million samples, the system accepts a genre, artist, and a snippet of lyrics and outputs tune samples. OpenAI stated the tunes "reveal local musical coherence [and] follow standard chord patterns" however acknowledged that the songs do not have "familiar bigger musical structures such as choruses that repeat" and that "there is a significant space" in between Jukebox and human-generated music. The Verge mentioned "It's technically outstanding, even if the results sound like mushy versions of tunes that may feel familiar", while Business Insider mentioned "remarkably, some of the resulting tunes are appealing and sound genuine". [234] [235] [236]
User user interfaces

Debate Game

In 2018, OpenAI released the Debate Game, which teaches machines to discuss toy problems in front of a human judge. The function is to research whether such an approach may assist in auditing AI choices and in establishing explainable AI. [237] [238]
Microscope

Released in 2020, Microscope [239] is a collection of visualizations of every substantial layer and neuron of eight neural network models which are frequently studied in interpretability. [240] Microscope was produced to analyze the functions that form inside these neural networks easily. The designs included are AlexNet, VGG-19, various versions of Inception, and various variations of CLIP Resnet. [241]
ChatGPT

Launched in November 2022, ChatGPT is an artificial intelligence tool developed on top of GPT-3 that offers a conversational interface that enables users to ask concerns in natural language. The system then responds with an answer within seconds.

Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking
None
Due date
No due date
0
Labels
None
Assign labels
  • View project labels
Reference: alfredgreener5/xcoder#1